3 (Sem-1) MAT M 2

2014

MATHEMATICS

(Major)
Paper: 1.2
(Calculus)

Full Marks : 80
Time : 3 hours
The figures in the margin indicate full marks for the questions

1. Answer the following questions : $1 \times 10=10$
(a) Write down the nth derivative of $\cos (3 x+5)$.
(b) If $u=f\left(\frac{y}{x}\right)$, then obtain the value of $x \frac{\partial u}{\partial x}+y \frac{\partial u}{\partial y}$.
(c) The equation of a curve is $\log y=x \log a$. What is the length of the subtangent to the curve at the point $P(x, y)$?
(d) Define the curvature of a curve at point on it.
(e) Write down the equation of the asymptote of the curve $x y-3 x-4 y=0$ which is parallel to the x-axis.
(f) If $f(x, y)=\log \left(x^{2}+y^{2}\right)$, then determine $\frac{\partial f}{\partial y}$.
(g) Choose the correct answer :
$\int \sqrt{a^{2}-x^{2}} d x$ (ignoring the constant of integration) equals
(i) $\frac{x \sqrt{a^{2}-x^{2}}}{2}+\frac{a^{2}}{2} \cos ^{-1} \frac{x}{a}$
(ii) $\frac{x \sqrt{a^{2}-x^{2}}}{2}+\frac{a^{2}}{2} \sin ^{-1} \frac{x}{a}$
(iii) $\frac{x \sqrt{a^{2}-x^{2}}}{2}+\frac{a^{2}}{2} \cosh ^{-1}\left(\frac{x}{a}\right)$
(iv) $\frac{x \sqrt{a^{2}-x^{2}}}{2}+\frac{a^{2}}{2} \sinh ^{-1}\left(\frac{x}{a}\right)$
(h) Write down the value of $\int_{-a}^{a} x^{3} f(x) d x(a \neq 0)$ where f is an even function.
(i) Evaluate $\int_{-\pi / 2}^{\pi / 2} \cos x d x$.
(j) Write down the intrinsic equation of the catenary $y=c \cosh \left(\frac{x}{c}\right)$.
2. Answer the following questions :
$2 \times 5=10$
(a) If $y=\log \left(a x+x^{2}\right)$, then find y_{n}.
(b) Find $\frac{d s}{d \theta}$ for the curve $r=a e^{\theta \cot \alpha}$.
(c) Show that

$$
\int_{0}^{\pi} x f(\sin x) d x=\frac{\pi}{2} \int_{0}^{\pi} f(\sin x) d x
$$

(d) Show that the area of a loop of the curve $r=a \cos 2 \theta$ is $\frac{\pi a^{2}}{8}$.
(e) Find the volume generated by revolving about $O X$, the area bounded by $y=x^{3}$ between $x=0$ and $x=2$.
3. Answer the following questions :
(a) If $u=F(y-z, z-x, x-y)$, then prove that

$$
\begin{gathered}
\frac{\partial u}{\partial x}+\frac{\partial u}{\partial y}+\frac{\partial u}{\partial z}=0 \\
\text { Or }
\end{gathered}
$$

If $y=f(x+c t)+\phi(x-c t)$, then show that

$$
\frac{\partial^{2} y}{\partial t^{2}}=c^{2} \frac{\partial^{2} y}{\partial x^{2}}
$$

(b) Trace the curve $x=a(\theta+\sin \theta)$, $y=a(1-\cos \theta) ;-\pi \leq \theta \leq \pi$.

Or
Prove that the sum of the intercepts of the tangent to the curve $\sqrt{x}+\sqrt{y}=\sqrt{a}$ upon the coordinate axes is constant.
(c) Evaluate :

$$
\begin{gathered}
\int \frac{d x}{3+5 \cos x} \\
\int \frac{\text { Or }}{(1+x) \sqrt{1+2 x-x^{2}}}
\end{gathered}
$$

(d) Find the perimeter of the circle $x^{2}+y^{2}=a^{2}$.
4. Answer either (a) or (b) :
(a) State the Leibnitz theorem and use it to prove the following :
$2+5+3=10$
(i) $\left(1-x^{2}\right) y_{n+2}-(2 n+1) x y_{n+1}-n^{2} y_{n}=0$
where $y=\left(\sin ^{-1} x\right)^{2}$
(ii) $y_{n}=\frac{(n-1)!}{x}$ if $y=x^{n-1} \log x$

(6)

(b) Define cusp and isolated points. Search for double points on the curve

$$
x^{2} y+x^{3} y+5 x^{4}=y^{2} \quad 2+8=10
$$

6. (a) If $u_{n}=\int_{0}^{\pi / 2} \theta \sin ^{n} \theta d \theta$ and $n>1$, then prove that

$$
u_{n}=\frac{n-1}{n} u_{n-2}+\frac{1}{n^{2}}
$$

(b) If $I_{n}=\int\left(a^{2}+x^{2}\right)^{n / 2} d x$, then show that

$$
\begin{equation*}
I_{n}=\frac{x\left(a^{2}+x^{2}\right)^{n / 2}}{n+1}+\frac{n a^{2}}{n+1} I_{n-2} \tag{5}
\end{equation*}
$$

7. (a) Find the area of the region bounded by the asteroid $x^{2 / 3}+y^{2 / 3}=a^{2 / 3}$.
(b) Find the surface area of the solid generated by revolving the cardioid $r=a(1-\cos \theta)$ about the initial line.
